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ABSTRACT: The borosilylcyclopropanation of styrene derivatives using a (diiodo(trimethylsilyl)methyl)boronic ester carbene
precursor is reported herein. The key reagent was synthesized in a 4-step sequence using inexpensive and commercially available
starting materials. This method enabled the preparation of novel 1,1,2-tri- and 1,1,2,2-tetrasubstituted borosilylcyclopropanes up to
excellent yields and diastereoselectivity. The reaction is organocatalyzed by eosin Y in the presence of visible light. A mechanism
consistent with the experimental observations was postulated based on density functional theory calculations. The versatility of these
entities was highlighted through post-functionalization reactions.

■ INTRODUCTION
The cyclopropane moiety is an often targeted sca"old in
organic and medicinal chemistry.1 Due to its rigid three-
dimensional framework with spatially distinct and well-defined
substituents, this structural motif is widely prevalent in
biologically active compounds.2 Extensive e"ort has been
made to furnish straightforward access to highly substituted
cyclopropanes. Furthermore, the development of methods for
their introduction into complex molecules is of significant
interest.3 Cyclopropanes are also useful synthetic handles, and
boronate and silyl units are increasingly found in recent drug
candidates.4,5 For instance, boron-containing active pharma-
ceutical ingredients, such as bortezomib, tavaborole, and
crisaborole, were approved by the FDA and European
authorities in the past decades.6 Silicon, being intrinsically
non-toxic, allows the pharmacodynamic properties of drug
candidates to be improved when the C−Si bond is used as a
CC bond bioisostere.7 Novel highly substituted small ring
systems, such as gem-borosilylcyclopropanes are attractive
building blocks, and methods to access them are in demand.
From established methods, metal carbene or carbenoid

transfer to alkenes is one of the most e#cient approaches to
prepare cyclopropanes.4 A direct method to synthesize
cyclopropylsilanes diastereoselectively was initially reported
by Takai.8a This method employs an organochromium reagent
generated from (diiodomethyl)trialkylsilane and stoichiometric
amount chromium chloride. These reaction conditions were
later improved to use a catalytic quantity of chromium and
manganese as the stoichiometric reductant (Scheme 1a)8b or
altered to obtain cyclopropylboronate esters.8c Despite the
e#ciency of these methods, the use of toxic chromium limits
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Scheme 1. Previous Direct Cyclopropanations Using
Diiodomethyl Reagentsa

aTMEDA: N,N,N’N′-tetramethylethylenediamine; CFL: compact
fluorescent lamp; pin: pinacol.
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the applicability of these methods. A Simmons−Smith type
borocyclopropanation was meanwhile reported where coordi-
nation of the zinc carbenoid and the allylic ether oxygen of the
substrate led to excellent diastereoisomeric ratios.9 In the last
century, chemists were inspired by the blueprints of light-
harvesting biomolecules found in nature, which allowed use of
transition-metal complexes and organic dyes that employ
photons to drive chemical transformations.10 Photochemical
methods were applied to a convenient and scalable metal-free
borocyclopropanation using UVA light, an organic photo-
catalyst, and continuous flow technology with modest
diastereoselectivity (Scheme 1b).11 In 2019, Suero and co-
workers described a photocatalyst-free light-mediated synthesis
of cyclopropylcarboxylates that were obtained using a
diiodomethylcarboxylate reagent (Scheme 1c).12 Yet, from all
the previous cyclopropanation methods using diiodoalkyl
reagents, lower diastereoselectivity was obtained under mild
reaction conditions. To the best of our knowledge, no example
of gem-borosilylcyclopropanes has been reported in the
literature so far.
Herein, we report a metal-free and visible-light mediated

synthesis of gem-borosilylcyclopropanes (Scheme 1d). A user-
friendly setup utilizing household white LEDs vs a specific
photoreactor allowed the cyclopropanation of numerous
styrene derivatives. Optimized organocatalytic and visible
light-activated conditions resulted in a broad range of novel
silylcyclopropylboronate esters with good yields and excellent
diastereoselectivity driven by hindrance of the silylated group.
Complementary to previous borocyclopropanations,11 cis-
borocyclopropanes were obtained in good yields (Scheme 3).

■ RESULTS AND DISCUSSION
Synthesis of Reagent Diiodomethyl Reagent 2. The

chromatography-free synthesis of (diiodo(trimethylsilyl)-
methyl)boronic ester 2 was completed in a 4-step sequence
inspired by the previously published synthesis of diiodome-
thylpinacol boronate used for borocyclopropanation (Scheme
2).9,13 The first step is the formation of a dichloromethyl anion

starting from dichloromethane, which is then quenched with
trimethylsilyl chloride to obtain the commercially available, but
expensive dichloromethyltrimethylsilane 4 in 85% yield. The
subsequent addition of boronic acid using commercial
trimethyl borate followed by pinacol protection on the boronic
acid a"orded product 6 in good yield. Finally, a double

Finkelstein reaction with sodium iodide in acetone produced
the diiodomethylsilylboronate ester reagent 2 in 65% overall
yield from dichloromethane on a 20 g scale.14 The structures
of 6 and 2 were unambiguously confirmed by X-ray
crystallographic analysis. Reagent 2 was kept at −20 °C and
did not show any sign of degradation over 3 years.

Optimization Studies. Upon investigating several reaction
parameters, it was determined that the cyclopropanation of
styrene 1a using diiodoboromethylsilane 2 a"orded 3a in good
yield at room temperature with eosin Y as the photocatalyst, i-
Pr2NEt, sodium thiosulfate, and white LED irradiation (Table
1, entry 1). This transformation was unsuccessful using either
dichloromethyl reagent 6 or its chloroiodomethyl analog
(Table 1, entries 2, 3). This transformation was possible with a
ruthenium photocatalyst a"ording product 3a in a slightly
lower yield (entry 4). Considering the high cost and low
sustainability of transition metal-based photoredox catalysts,15
the optimization with the latter was not further pursued and
other organophotocatalysts were tested. A decrease of the yield
was observed with rose bengal or xanthone as a photocatalyst
(entries 6, 7) and interestingly, a 43% yield of cyclopropane 3a
was obtained without any photocatalyst (entry 7). When
lowering the stoichiometry of 2 to one equivalent, a decreased
44% yield along with a diastereoisomeric ratio of 9:1 were
observed (entry 8). Similar yields were obtained with 2 or 3
equivalents of diiodoboromethylsilane 2 (entries 1 vs 9). On
the other hand, using reagent 2 as the limiting reagent and
alkene 1a in excess led to only 63% yield of the desired product
(entry 10). These conditions facilitated the purification
process, and often times the crude silylcyclopropylboronate
ester could be used directly in further derivatization reactions
(Scheme 4). Using sodium bisulfite instead of sodium
thiosulfate or the absence of a reducing agent resulted in
73% yield in both cases (Table 1, entries 11, 12). Yields were
slightly decreased to 75% and 84% when the reaction solvent
was dichloromethane and acetonitrile, respectively (entries 13,
14). Since acetone is a recommended solvent based on eco-
toxicity, health, and safety,16 it was chosen for the subsequent
scope study. A survey of other amine bases indicated that i-
Pr2Net was optimal in this reaction (entry 15). This
transformation required a minimum of 24 h of irradiation to
be completed as 16 h led to a lower yield (entry 16). Di"erent
light sources were then tested and although the maximum
absorbance of eosin Y is at 520 nm,17 a decreased yield was
obtained with green LED irradiation (entry 17). It is
noteworthy that the maximum absorbance of reagent 2 is at
326 nm, in the UVA region.18 As expected, a control
experiment also indicated that no product was observed
when the reaction was left in the dark at room temperature for
24 h (entry 18).
Additionally, the relative configuration of the major

diastereoisomer was confirmed by X-ray crystallography. As
expected from the bulkier nature of the silylated group
compared to the boronate ester, the crystal revealed a trans
relationship between the phenyl and the silyl substituents.

Scope. To explore the generality of the reaction, an array of
diverse styrenes were submitted to the visible-light mediated
borosilylcyclopropanation under the optimized conditions
using 2 equivalents of diiodoboromethylsilane 2 (Table 1,
entry 9). Borosilylcyclopropanes arising from electron-rich
substituted styrenes (3b−f) or styrenes bearing a halogen
(3h−j) were obtained in 58−96% yields and excellent
diastereoselectivity (Scheme 3). The reaction conditions are

Scheme 2. Synthesis of Diiodomethyl Reagent 2a

aThermal ellipsoids are plotted at the 50% probability level.
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compatible with the presence of a boronate ester substituent
on the styrene moiety and 3l was obtained in 83% by 1H NMR
and 46% isolated yield. It is worth mentioning that this
bis(boronate ester) was particularly unstable over silica because
of the aromatic boronate, and decomposition was observed
upon purification (3l).19 Interestingly, styrenes with strong
electron-withdrawing groups were less reactive and para-
trifluoromethyl 3k, para-cyano 3m, and para-nitro 3n were
synthesized in 23−45% yield. To our delight, sterically

hindered alkenes were well tolerated, and both ortho- and
meta-substituted styrenes delivered products 3p−3s in 55−
87% yield with modest to excellent diastereoselectivity.
Naphthyl- and benzodioxole-substituted alkenes provided the
desired borosilylcyclopropanes 3t−u. Moreover, unprotected
and protected indolyl-substituted alkenes were compatible with
the reaction conditions and a"orded cyclopropanes 3v−x in
good yields. Notably, 1,1-disubstituted alkenes were tolerated,
albeit the tetrasubstituted cyclopropanes 3y and 3z were
obtained in moderate yields and low diastereoselectivity (3y).
Unfortunately, both cis- and trans-1,2-disubstituted and alkyl-
substituted alkenes were unsuccessful.20 Due to the increased
stability of the product and to the improvement of the reaction
e#ciency, overall yields were significantly improved compared
to a recently developed borocyclopropanation, specifically up
to a 31% increase for the corresponding substrate of 3c.11 The
functional group tolerance of the reaction makes it suitable for
late-stage functionalization reactions. Alkenes derived from
fenofibrate, acetaminophen, and estrone were successfully
cyclopropanated, a"ording drug-like molecules 3aa−ac in 55%
to 86% yield.

Application of Borosilylcyclopropanes. To further
highlight the synthetic utility of gem-borosilylcyclopropanes,
product 3a was derivatized to produce diverse functionalized
1,1,2-trisubstituted or 1,2-disubstituted cyclopropanes 7−12
(Scheme 4A). The trimethylsilyl functional group underwent
smooth proto-desilylation upon treatment with a fluoride
source and heat21 to produce borocyclopropane 7 in 58% yield
in a 3:1 diasteroselective ratio. This method is therefore

Table 1. Optimization Studies and Control Experimentsa

aAll entries were conducted on a 0.17 mmol scale. Thermal ellipsoids
are plotted at the 50% probability level. 1H NMR yield of combined
diastereoisomers was determined using triphenylmethane as the
internal standard. bUnder continuous flow, using 5 mol% of xanthone,
no Na2S2O3, CH2Cl2 as the solvent, and irradiated with UVA during 1
h. c9:1 dr. dIsolated yield on a 1.0 mmol scale after 48 h.

Scheme 3. Borosilylcyclopropanation of Various Styrene
Derivativesa

aIsolated yields of combined diastereoisomers. Diastereoisomeric
ratio shown in parentheses and determined in crude 1H NMR.
Reactions done on a 0.20 mmol scale. b64 h reaction time. cThermal
ellipsoids are plotted at the 50% probability level.

The Journal of Organic Chemistry pubs.acs.org/joc Article

https://doi.org/10.1021/acs.joc.2c02535
J. Org. Chem. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/10.1021/acs.joc.2c02535?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c02535?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c02535?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c02535?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c02535?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c02535?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c02535?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.2c02535?fig=sch3&ref=pdf
(null)://(null)pubs.acs.org/joc?ref=pdf
https://doi.org/10.1021/acs.joc.2c02535?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


complementary to those a"ording the trans isomer.9,11 When
the desilylation reaction was done in the presence of
benzaldehyde, cyclopropylmethanol 8 was obtained in 48%
yield and a diastereoisomeric ratio of 1.5:1.22 Further oxidation
of 8 a"orded the corresponding ketone quantitatively as a
single cyclopropyl diastereoisomer (8a). This sequence
confirmed that the change in the diastereomeric ratio arose
from a mixture at the benzylic alcohol position center and the
relative configuration of the cyclopropane substituents
remained unaltered. Functionalization of the boronate ester
was subsequently investigated.23 Notably, the addition of (4-
methoxyphenyl)lithium led to borinic acid 9, which was
isolated in 94% yield. The structural assignment was confirmed
by NMR and X-ray crystallography. Further lithiation-
borylation5,24 delivered gem-vinylsilylcyclopropane 10 as a
single diastereoisomer in 87% yield. The boronate ester moiety
could be oxidized to the alcohol to give highly valuable gem-
silylcyclopropanol 11 in 64% yield.25 Proto-deboration of 3a
was achieved in 40% yield upon treatment with t-BuOK thus
producing 12 in a 14:1 dr. Orthogonal reduction of 3a to the
boronate 7 or silane 12 provided the cis- or trans-cyclopropane
products selectively that could be engaged subsequently in
known silyl- or borocyclopropane post-functionalization
reactions.25b,26 While silane reduction eroded the stereo-
selectivity in product 7, no isomerization was observed for
other transformations including substitution of the silane (8a)
and transformation on the boronate motif in adducts 9−12.
Various classical and atypical Suzuki−Miyaura cross-

coupling conditions, including strategies such as the activation
of the boronate with tert-butyllithium25b or via the
trifluoroborate,27 were unsuccessful with borocyclopropane
3a. The steric hindrance of the silyl functionality was
hypothesized as the root cause. However, the robustness of
the boronic ester was leveraged to functionalize orthogonally.
A fruitful distal coupling left the shielded boronic ester on the
cyclopropane subsequently available for further potential
functionalization (Scheme 4B). When para-bromo-phenyl-
borocyclopropane 3h was used as the electrophilic partner and

3-pyridinylboronate pinacol ester as the nucleophile, the
coupled adduct 13 was obtained in a 94% yield. Alternatively,
the same set of conditions using 4-B(pin)phenylcyclopropane
3l as the nucleophilic partner and 3-bromopyridine as the
electrophile furnish the desired heteroaryl product 13 in an
excellent 88% isolated yield. This latter result underlines the
di"erence in reactivity between the two B(pin) moieties in 3l.

Mechanistic Studies. A postulated photoredox mecha-
nism for borosilylcyclopropanation is depicted in Scheme 5A.

Having a quantum yield of 0.32, eosin Y performs most of its
electronic transfers from its singlet state.17 After visible-light
irradiation, excited eosin Y (ES1

Ox(eosinY) = −1.58 V vs SCE
(saturated calomel electrode))17 is oxidized by diiodobor-
omethylsilane 2 (ERed

1/2
2 = −1.28 V vs SCE),28 leading to a

transient radical anion that fragments into iodo-boromethylsi-
lane radical 2a. The ground state of eosin Y (EOx

1/2(eosinY) =
+0.76 V vs SCE) is recovered upon reduction by i-Pr2NEt
(EOx

1/2(i‑Pr2NEt) = +0.63 V vs SCE).11 The reduction quenching
cycle was excluded since eosin Y in its ground state is not able
to oxidize diiodoboromethylsilane 2 (Ered

1/2(eosinY) = −1.08 V
vs SCE compared to Ered

1/2(2) = −1.28 V vs SCE).17,29 Then,
apart from the photoredox cycle, homolytic substitution of
styrene by radical 2a to give radical intermediate 14, which
would undergo cyclopropanation to obtain cyclopropane 3a.

Scheme 4. Post-functionalizationa

aIsolated yields. A. Post-functionalization of gem-borosilylcyclopro-
pane 3a. bThermal ellipsoids are plotted at the 50% probability level.
B. Distal Suzuki−Miyaura cross-coupling on cyclopropanes 3h,l.

Scheme 5. Mechanistic Studiesa

aA. Photoredox cycle, propagation and termination mechanism. B.
Calculated free energy profile for radical and anionic pathways using
Gaussian 16.C.01 (SMD-MeCN-M06-2X/DGDZVP). Computation-
al studies using a model substrate where the pinacolic methyl groups
were replaced with hydrogen were conducted to elucidate whether the
stereo-determining step was anionic or radical. Pathways were
surveyed with SMD-MeCN-M06-2x/DGDZVP31 using Gaussian
16.C.01.32
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The remaining iodide radical would be quenched by
termination by i-Pr2NEt radical cation. The subsequent
cyclopropanation step could take place via either an anionic
or radical pathway. In a deuterated β-styrene borocyclopropa-
nation experiment conducted by Ooi and coworkers, the
concerted cyclopropanation of a singlet-carbene intermediate
was excluded, thus leading to a stepwise cyclopropanation.30 In
the radical pathway, as suggested by Suero et al,29 radical 14
would directly go through the cyclization step by propagation.
However, in an anionic pathway, intermediate 14 would go
through a single electron transfer with the i-Pr2NEt radical
cation to give a benzylic anion. Cyclization would take place by
substitution and expulsion of iodide to obtain desired product
3a. Since the anionic pathway begins with radical 14 as the
starting material, even the observed radical inhibition by
TEMPO could not exclude one cyclization mechanism over
the other.
Both computed pathways predominantly lead to the E-

isomer of the product 3a consistent with the experimental
results.33 To determine which pathway might be involved, the
anionic and radical pathways for the E-isomer were compared
directly (Scheme 5B). In the radical pathway, the di"erence in
free energy from intermediate 14″ to its transition state 14‡

was calculated to be 11.5 kcal/mol (Scheme 5B, top). In the
thermodynamic cycle, formation of the anion from radical
through a fast electron transfer is possible. The resulting
benzylic anion was stabilized by the boron atom and led to a
four-membered ring intermediate 15”, with a free energy of
−78.2 kcal/mol (Scheme 5B, bottom). Since the anionic
transition state 15‡ was calculated to have a relative free energy
of −74.6 kcal/mol, the barrier from intermediate 15″ to its
transition state is 3.6 kcal/mol. Notably, the barrier of the
anionic pathway is 7.9 kcal/mol lower than the barrier of the
radical pathway (15″ vs 14”). Hence, likely due to the
stabilization of the carbanion by the boron atom, the anionic
pathway appears to be predominant. Adding an electron-
withdrawing group on 3a might decrease the free energy of 15
and might increase the cyclization step activation energy. This
explains the lowered yields of 3k, 3m, and 3n.

■ CONCLUDING REMARKS
In summary, a highly e#cient gem-borosilylcyclopropanation
of a broad scope of styrene derivatives was developed in a
diastereoselective manner. Metal-free, user-friendly, and mild
reaction conditions taking advantage of photochemistry and
using acetone as the solvent produced novel borosilylcyclo-
propanes motifs. The key reagent was synthesized in a
chromatography-free 4-step sequence starting from inexpensive
and readily available commercial reactants. To illustrate the
potential of the reaction in late-stage functionalizations, 29
borosilylcyclopropanes, three of them being alkenyl derivatives
from natural or drug-like molecules, were synthesized in up to
96% yield. Complementary to established trans-borocyclopro-
panations, the first method to produce borosilylcyclopropane
gives access to cis-borocyclopropanes after proto-desilylation.
Computational mechanistic studies determined that the
cyclopropanation step was anionic, stabilized by a four-
membered ring boronate anion. Orthogonal and distal
functionalization of borosilylcyclopropanes allowed synthesis
of distinctly valuable synthetic targets and addition of
complexity. Further functionalization reactions are currently
being conducted and will be reported in due course.
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